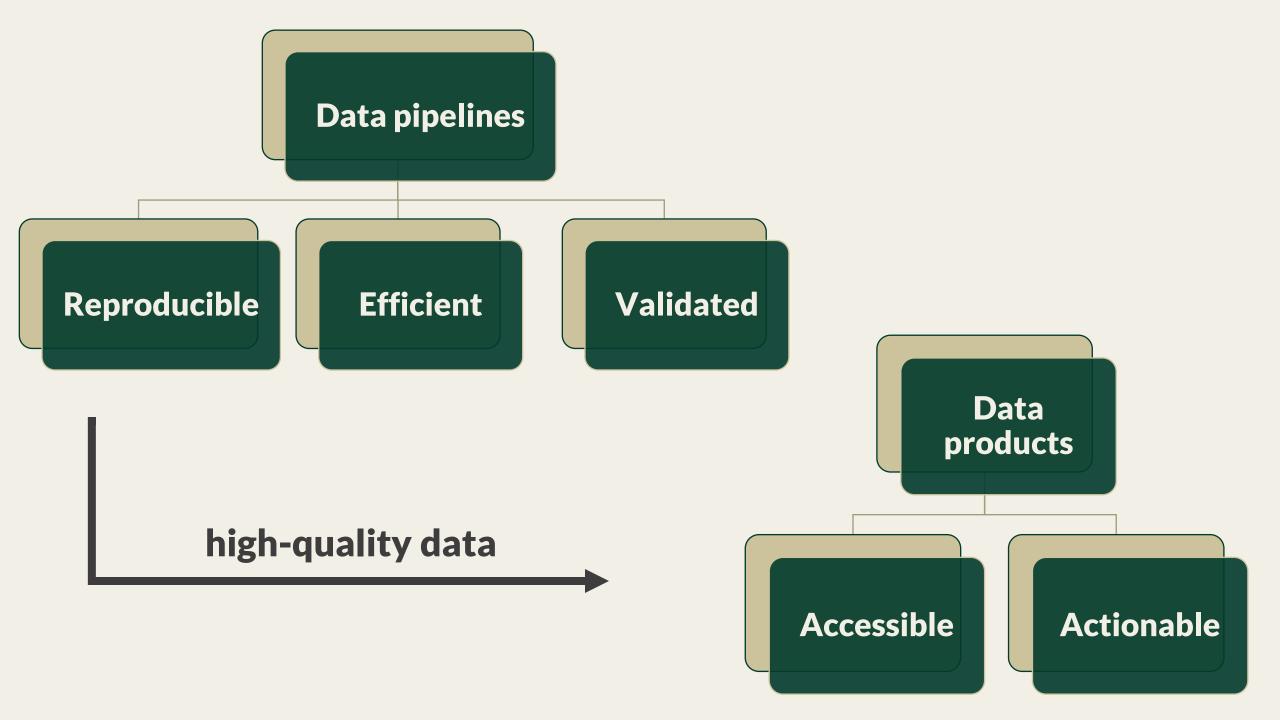
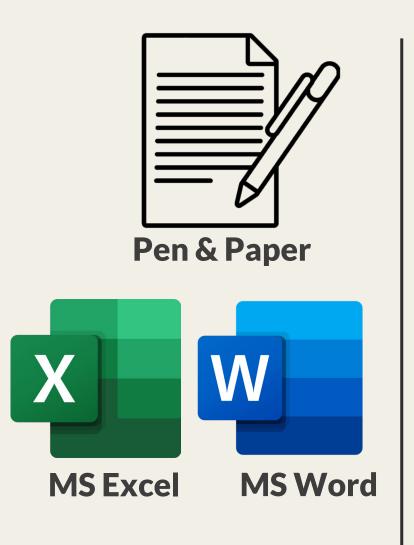
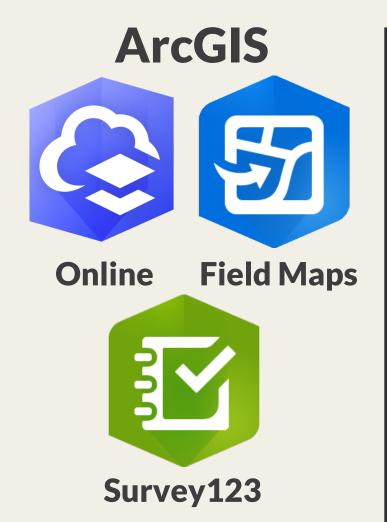
Modernizing data pipelines for accessible and actionable insights

Jadey Ryan
Data Scientist, WSDA
WSU NWREC Lunch & Learn
January 16, 2025

State of the Soils Assessment collected 1,165 samples & provided 400+ custom reports over 5 years.


Data pipeline


Custom reports


Store scripts/data

Pipeline tools & technologies

Art by Jack Corbett

Before: assign sample IDs & provide labels

Site Code and Label Cheat Sheet

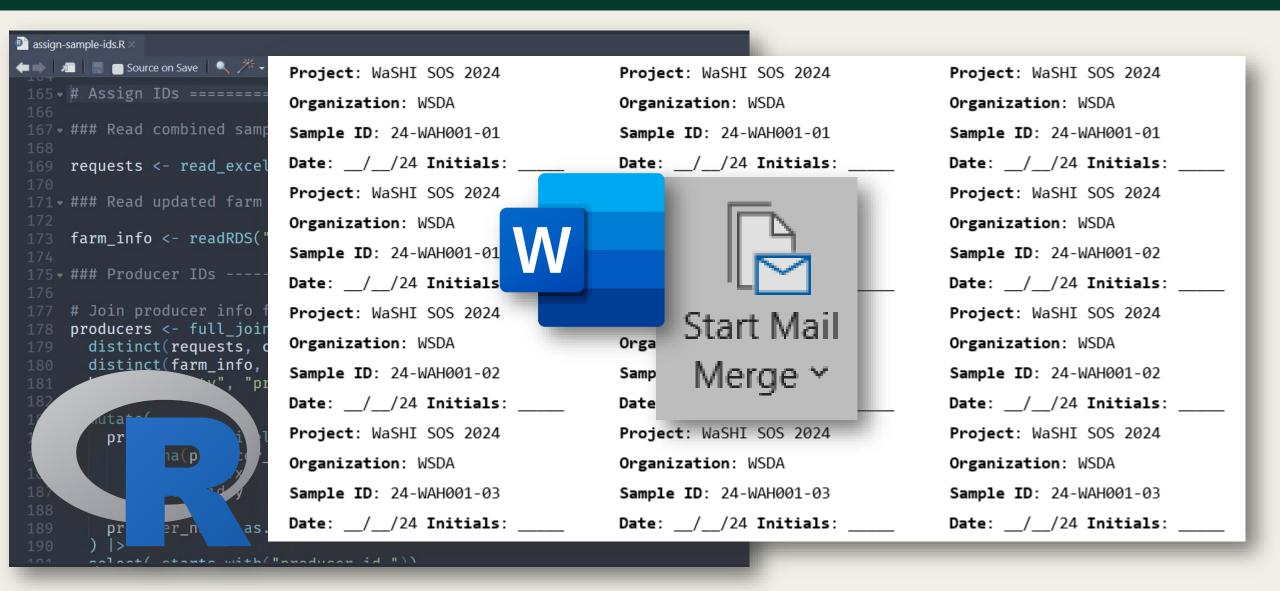
Site Code and Sample ID

Each sample is assigned a unique Site Code and a Sample ID. Site Code and Sample ID are similar and only distinguished by the additional depth indicator for the Sample ID. Both include the County ID. Producer ID. Treatment ID. and Field ID. Sample ID includes a sampling depth for each soil sample.

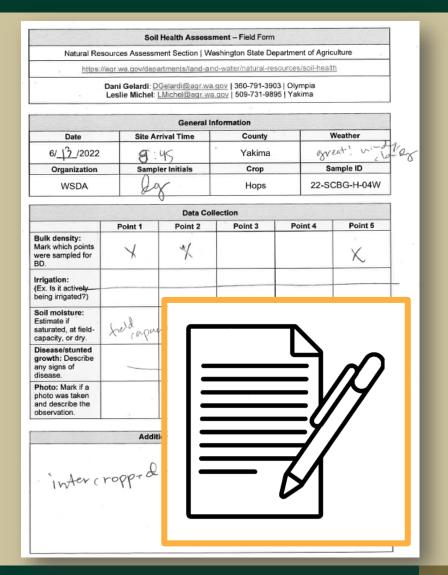
		Item	Description or Abbreviation
nty – Field ID)	(ר	County	First three letters
	- Depth)	Producer ID	Starting at 001, ascribed by CD
Site Code (County -	Sample ID (County	Treatment ID	See below table, select option for the primary treatment
Site C	ample ID	Field ID	Starting at 01 for each producer
	Š	Depth	0" to 6" = A, 6" to 12" = B, 0" to 12" = C, Bulk Density = Bd

Counties that have the same first three letters will be abbreviated as follows:

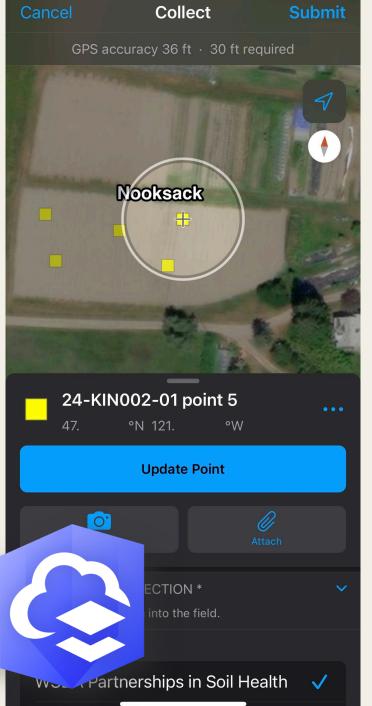
- Clark CLK
- Kitsap KIP
- Grays Harbor GRH
 Skamania SKM

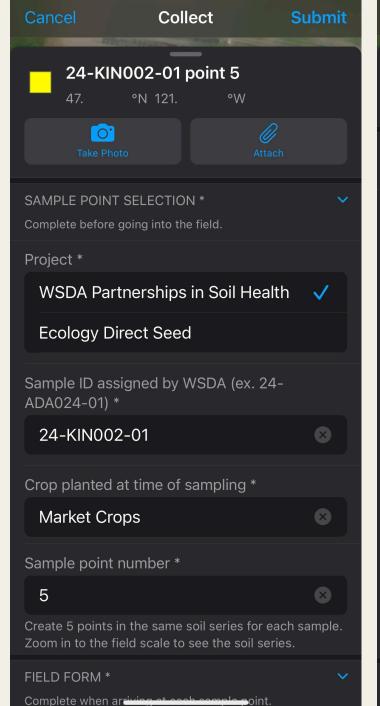

- Klickitat KLK

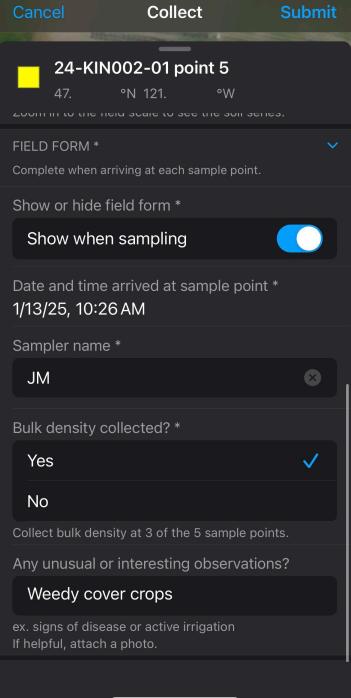
Treatment	Option 1	Option 2	Option 3	Option 4
Land type	Cropland (CL)	Conservation reserve program (CRP)	Native prairie (NP)	Rangeland (RNG)
Tillage	Conventional till (CT)	Strip till (ST)	No till (NT)	
Lime application	Lime application (L)	No lime application (NL)		
Cover crop	Cover crop (CC)	No cover crop (NCC)		
Pesticide application	Conventional (CON)	Organic (ORG)		


Project: WSDA SHI	
Sample ID:	
Date:	
Initials:	_ CD:
Project: WSDA SHI	
Sample ID:	
Date:	
Initials:	_ CD:
Project: WSDA SHI	
Sample ID:	
Date:	
Initials:	_ CD:
Project: WSDA SHI	
Sample ID:	
Date:	_ Depth:
Initials:	_ CD:
Project: WSDA SHI	
Sample ID:	
Date:	_ Depth:
Initials:	CD.

Project: WSDA SHI Project: WSDA SHI Sample ID: Sample ID: Date: _____ Depth: Date: _____ Depth: _____ Initials: CD: Initials: CD: Project: WSDA SHI Project: WSDA SHI Sample ID: _____ Date: _____ Depth: _____ Initials: CD: Project: WSDA SHI Sample ID: Date: _____ Depth: _____ Initials: CD: Project: WSDA SHI Sample ID: _____ Date: Depth: Project: WSDA SHI Project: WSDA SHI Sample ID: Sample ID: _____ Date: _____ Depth: Date: Depth: Initials: ____ CD:____ Initials: CD:


After: assign sample IDs & provide labels




Before: field forms

							·	
1 sampl	eld	7	dateTime <u></u>	crop	irrigation <u></u>	soilMoisture <u></u>	diseaseStunted <u></u>	notes
2 22-CLA	A001-01-A		5/27/2022 10:00	Pasture	no	sat	no	
3 22-CL4	A001-02-B		5/27/22 11:00	Pasture	no	sat	no	
4 22-CL4	A002-01-C		4/26/22 12:00	Market, Brassica, And C	drip	3 fc, 2 sat	no	
5 22-CLA	A002-02-C		4/26/22 13:00	Cover Crops	drip, drip, drip, no, no	4 fc, 1 sat	no	
6 22-CLA	A003-01-A		5/27/2022 15:00	Pasture	no	sat	no	
7 22-CL4	A003-02-B		5/27/2022 14:00	Pasture	no	sat	no	
8 22-CLA	\006-01-Н		4/20/22 10:00	Vegetable (Peppers)	drip	fc - dry	na	_
9 22-CLA	A006-02		4/20/22 10:30	Blueberry	yes	fc	no	
10 22-CLA	A006-03		4/20/22 9:45	Squash	no	4 fc, 1 sat	no	
11 22-CLA	A006-04		4/20/22 11:00	Orchard	no	sat	no	
12 22-CLA	\006-05-H		4/20/22 11:30	Vegetable (Brassica Or	drip	slightly moist	no	
13 22-CLA	A008-01		4/21/22 9:00	Pasture	no	fc	no	
14 22-CLA	009-01		4/19/22 11:00	Meadow	no	fc	no	meadow scaping
15 22-CLA	1009-02		4/19/22 12:00	Pollinators	no	3 sat, 2 fc	no	field 2 - pasture
16 22-DO	U004-03-B		4/26/22 8:25	Wheat	no	dry	no	uniform wheat, lower levels
17 22-DO	U007-03-C		5/3/22 9:30	Canola	no	dry	yes, no plants present	canola crop was sewn in durir
18 22-DO	U017-01-C		5/3/22 8:35	Wheat	no	4 fairly dry with some m	oisture, 1 dry top 2" with	field is newly rollled over to o
19 22-DO	U017-02-C		4/25/22 15:00	CRP/Conservation	no	dry	na	grasses appear healthy and lu
20 22-DO	U018-01-D		4/25/22 11:52	Wheat	no	dry	no	small amount of litter left on

Before: management surveys

Apricot

Barley

Asparagus

⊿ A		В	С	D	Е	F	G		Н		J		K
SAMPLE IDENT	TIFICATION									TIL	LAGE (for cash crop)		
Site Co	ode	Crop Type	Years in Current Management	(including cover	Years of Typical Crop Rotation	Percentage of year with live roots present	Tillage Sy	ystem	Subsoil Tillage (ripping) Use	Year of last	tillage Primary Ti	_	ary Tillage ement
FRA001CT01		Corn, Field	3-5	2 2-4	4	40-60	Conventiona	l Till N	No		2021 Turbotill	Drill, doub	e disk
FRA001CT02		Alfalfa Hay	3-5	1 5-8	8	40-61	Conventiona	I Till N	No		2021 Turbotill	Drill, doub	e disk
FRA001RNG03		CRP/Conservation	>20	0 No	ot applicable	80-100	Never Tilled	N	No	Never Tilled	Not applicable	e Not applic	able
⊿ A	В	С	D	Ë		F	G		Н		J	K	
SAMPLE IDENT	TIFICATION										TILLAGE (for casi	n crop)	
Site Code	Years Current Manageme nt	Crop Type	Years in Current Management	Number of crop (including cover cro one full rotatio	ops) in Years of T	ypical Crop Rotation	Percentage of year with live roots present		e System	Subsoil Tillage (deep ripping) Used	Year of last tillage	Primary Tillage Implement	Secondary Implen
		Alfalfa Hay	1-2		Not applicabl	le	Not applicable	Never Tilled	d Yes		Not applicable	Not applicable	Not applicable
		Alfalfa Seed	3-5		1		0-20	No-till	No		Within 1 week	Aerway	Aerway
		Alfalfa/Grass Hay	5-10		2-4		20-40	Minimum Ti			Within 1 month	Chisel plow	Chisel plow
		Alkali Bee Bed	10-20		5-7		40-60	Conventiona	al Till		Within 3 months	Chisel plow, with swe	
	1	Allium	>20		8-10		60-80				Within 1 year	Cultipacker	Cultipacker
		Apple			>10	l	80-100				More than 1 year ago	Drill, double disk	Drill, double d

Drill, hoe/chisel

Drill, single disk

Field Cultivator

Harrow, coiled tine

Harrow, pasture

Harrow, rotary

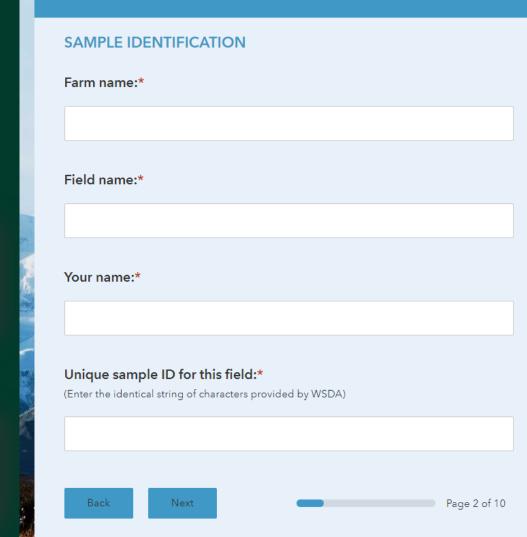
Field Cultivator, with s Field Cultivator

More than 3 years ago

Drill, hoe/chis

Drill, single di

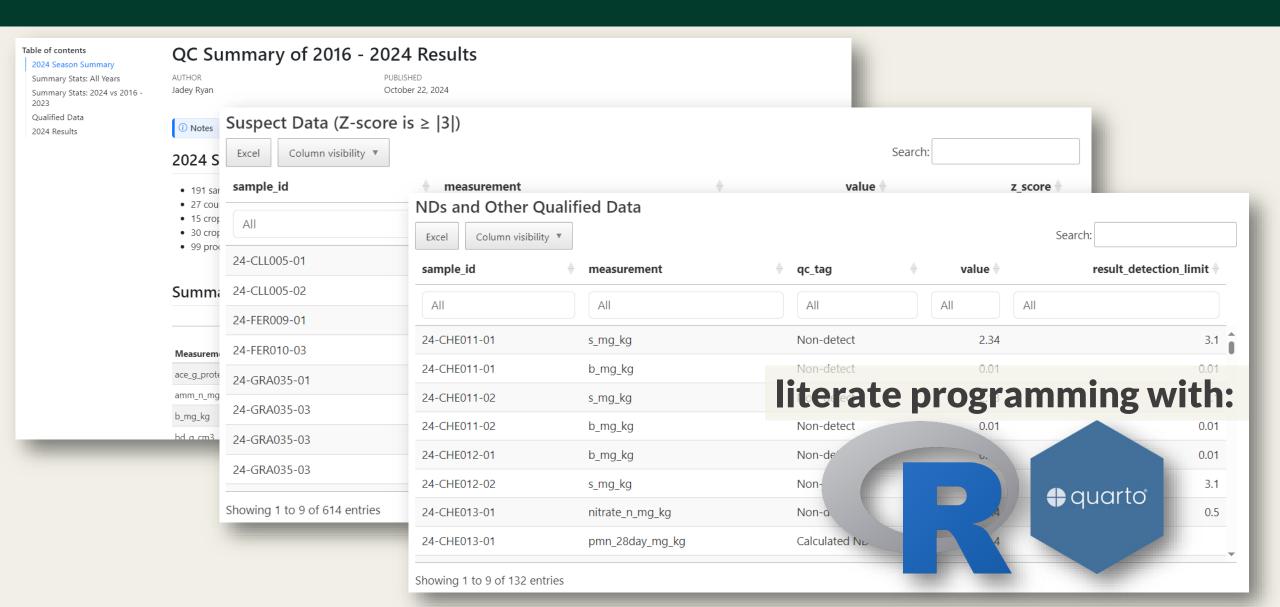
Field Cultivato


Harrow, coiled

Harrow, pastu

Harrow, rotary

After: management surveys


What is currently plante	ed at the time of soil sampling?*	
Be as specific as possible!	a at the time of son sampling:	
Ev. Hamp, Spinach (coad) Nurs	sery (lavender), Corn (field), Hay (oat)	
	brassica), Timothy, Fallow (tilled), Fallow (idle)	
Approximately when wh	hen this crop planted?	
Skip this question if not applica	able.	
■ MM/DD/YYYY	<u> </u>	
₩M/DD/YYYY	~	
Approximately how mar	ny times has this crop been planted in the fie	ld's
Approximately how mar		ld's
		ld's
Approximately how mar nistory?*		ld's
Approximately how marnistory?* -Please select-	ny times has this crop been planted in the fie	ld's
Approximately how mar nistory?* -Please select-		ld's
Approximately how marnistory?* -Please select-	ny times has this crop been planted in the fie	ld's
Approximately how marnistory?* -Please select- Please enter the field Be as specific as possible!	ny times has this crop been planted in the fie	ld's
Approximately how marnistory?* -Please select- Please enter the field Be as specific as possible! Example: 2024: Fallow (tilled)	ny times has this crop been planted in the fie	ld's
Approximately how manistory?* -Please select- Please enter the field Be as specific as possible! Example: 2024: Fallow (tilled) 2023: Fallow (idle), Tomato, Bro	ny times has this crop been planted in the fie I history for the last 5 years:	ld's
Approximately how mar history?* -Please select-	ny times has this crop been planted in the fie I history for the last 5 years:	ld's

Before: QA/QC lab results

											24hrmin		
												C_mgC.kg	
county	crop	sampleid	date	time	QC_notes		totalC_%			poxC_mg.kg	.day		mg
Asotin	wheat_fallow	ASO001NT01	6/21/2021			0.11374			2.45	300		33.725	
Asotin	wheat_fallow	ASO001NT02	6/21/2021			0.10699		1.3785	2.3	341		26.25	
Asotin	wheat_fallow	ASO002NT01	7/21/2021			0.14491			3	464		22.5	
Asotin	CRP	ASO003CRP01	6/24/2021			0.09639			1.7	217.5		45	
Asotin	wheat_fallow	ASO003NT01	7/21/2021			0.09882		0.9856	1.6	247.5		37.5	
Benton	wheat_fallow	BEN001NT01	7/21/2021			0.06116			0.75	183.5		15	
Benton	CRP	BEN002CRP01	6/23/2021			0.06946			0.95	240		35.625	
Benton	wheat	BEN002CT01	6/23/2021	0:07:00		0.06557	0.47945	0.47945	0.85	175.5		26.25)
0 Columbia	wheat_fallow	COL002NL722	6/9/2021	0:08:00		0.12367	1.62855	1.62855	2.8	329.5		41.25	j
1 Columbia	wheat_fallow	COL004NL733	5/12/2021	0:09:00		0.13091	1.78665	1.78665	2.85	412		50.625	,
2 Columbia	wheat_fallow	COL006NL662	5/12/2021	0:10:00		0.10492	1.23707	1.23707	2	139.5		50.6	i
3 Columbia	pea_dry	COL008NL372	6/8/2021	0:11:00		0.10113	1.19601	1.19601	1.95	120		31.875	,
4 Columbia	alfalfa_hay	COL009NL971	5/12/2021	0:12:00		0.08637	0.85669	0.85669	1.7	187		28.125	,
5 Columbia	pea_dry	COL010NL582	6/10/2021	0:13:00		0.09613	1.16808	1.11308	2	118		48.75	r
6 Columbia	wheat_fallow	COL012NL202	5/12/2021	0:14:00		0.16156	2.2784	2.2784	3.8	419		43.125	i
7 Columbia	wheat_fallow	COL014NL422	5/12/2021	0:15:00		0.11267	1.3079	1.3079	2.3	197		28.125	i
8 Columbia	wheat_fallow	COL018NL131	5/12/2021	0:16:00		0.08865	0.86296	0.86296	1.55	75.5		16.875	i
9 Columbia	wheat_fallow	COL020NL152	5/12/2021	0:17:00		0.09629	1.0755	1.0755	1.95	317.5		43.125	,
0 Douglas	CRP	DOU004CRP01	6/18/2021	0:18:00		0.06382	0.57784	0.57784	1.15	301		18.75	,
1 Douglas	pasture	DOU004RNG01	6/18/2021	0:19:00		0.06371	0.44198	0.44198	1.4	335		31.875	,
2 Douglas	wheat fallow	DOU006NT01	6/18/2021	0:20:00		0.09486	0.75548	0.70548	1.5	363.5		35.625	,
3 Douglas	wheat fallow	DOU006NT02	6/17/2021	0:21:00		0.10444	0.81524	0.81524	2.1	353.5		26.25	
4 Douglas	alfalfa_hay	DOU007AL01	6/18/2021	0:22:00		0.13352	0.95942	0.80442	1.95	475		52.5	
5 Douglas	pasture	DOU007RNG01	6/18/2021	0:23:00		0.05961	0.50447	0.49447	1.1	174.5		22.5	
6 Douglas	wheat fallow	DOU016CC01	6/17/2021			0.08599	0.50144	0.50144	1.35	304		22.5	
7 Douglas	CRP	DOU016CRP01	6/17/2021			0.07743		0.58407	1.15	219.5		31.875	
8 Franklin	corn field	FRA001CT01	6/28/2021			0.07078		0.45464	1.55	303.5		41.25	
9 Franklin	alfalfa_hay	FRA001CT02	6/28/2021			0.0791			1.4	463.5		18.75	
) Franklin	pasture	FRA001RNG03	6/28/2021			0.04364			0.55	150.5		22.5	
1 Grant	pasture	GRA001CL01	6/8/2021			0.13518		1.1514	1.75	369.5		46.875	
2 Grant	bean dry	GRA002CT01	6/7/2021			0.0814			0.65	159		18.75	
3 Grant	garlic	GRA003CL01	6/8/2021			0.11147		0.96569	1.15	289.5		18.75	
4 Grant	bean dry	GRA004CL01	6/8/2021			0.11624		0.88515	1.25	327.5		45	

After: QA/QC lab results

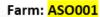
Pointblank Validation Series

Project Metadata

DATA FRAME sos-project-metadata	WARN 1	STOP -	NOTIFY	-							
STEP	COLUMNS	VALUES	TBL	EVAL	UNITS	PASS	FAIL	W	s	N	EXT
1 project_id is not null col_vals_not_null()	■project_id	_	o→	√	7	7 1.00	0 0.00	0	-	_	-
2 project_name is not null col_vals_not_null()	■ project_name	_	$\circ \rightarrow$	√	7	7 1.00	0 0.00	0	_	_	-
3 project_description is not null col_vals_not_null()	■project_descri	_	$\circ \rightarrow$	√	7	7 1.00	0 0.00	0	_	_	_
4 project_organization is not null col_vals_not_null()	■project_organi	_	$\circ \rightarrow$	√	7	7 1.00	0 0.00	0	_	_	_
project_organization_type is not null col_vals_not_null()	■project_organi	_	o→	✓	7	7 1.00	0.00	0	_	_	_
6 project_contact_name is not null col_vals_not_null()	■ project_contac	_	$\circ \rightarrow$	✓	7	7 1.00	0.00	0	_	_	-
7 project_contact_email is not null col_vals_not_null()	■ project_contac	_	$\circ \rightarrow$	✓	7	7 1.00	0 0.00	0	_	_	-
8 project_id is unique rows_distinct()	■ project_id	_	$\circ \rightarrow$	√	7	7 1.00	0 0.00	0	_	_	_
9 col_vals_in_set()	■project_organi	Adams CD, Asotin	C#	√	12	12 1.00	0 0.00	0	_	_	_
10 eproject_organization_type is valid col_vals_in_set()	■project_organi	Conservation Dis	₽	√	12	12 1.00	0 0.00	0	_	_	_
11 project_contact_email is valid col_vals_within_spec()	■project_contac	email	□	√	12	12 1.00	0 0.00	0	_	_	_
2025-01-08 10:18:34 PST 2.2 s	2025-01-08 10:	18:36 PST									

Before: create reports

Soil Health Assessment Results



Fall 2021

Thank you for being a participant in our State of the Soils Assessment. This work would not be possible without your collaboration and input.

Over the past two summers, WSDA, WSU, and multiple conservation districts traveled across Washington to sample over 400 fields in more than 20 crops. We are excited to share with you some preliminary results with data from your fields.

The goals of our project are to 1) Evaluate the current soil health status and priorities for crops across Washington; 2) Calibrate soil health scoring curves relevant for Washington's soils, climates, and cropping systems; and 3) Further understand how soil management affects important soil functions.

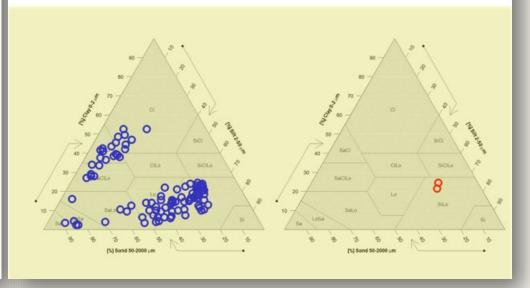
Project Team:

WSU

WSDA

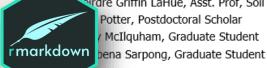
irdre Griffin LaHue, Asst. Prof, Soil Health Potter, Postdoctoral Scholar McIlguham, Graduate Student

Perry Beale, NRAS Manager Dani Gelardi, Soil Health Scientist Leslie Michel, Soil Scientist

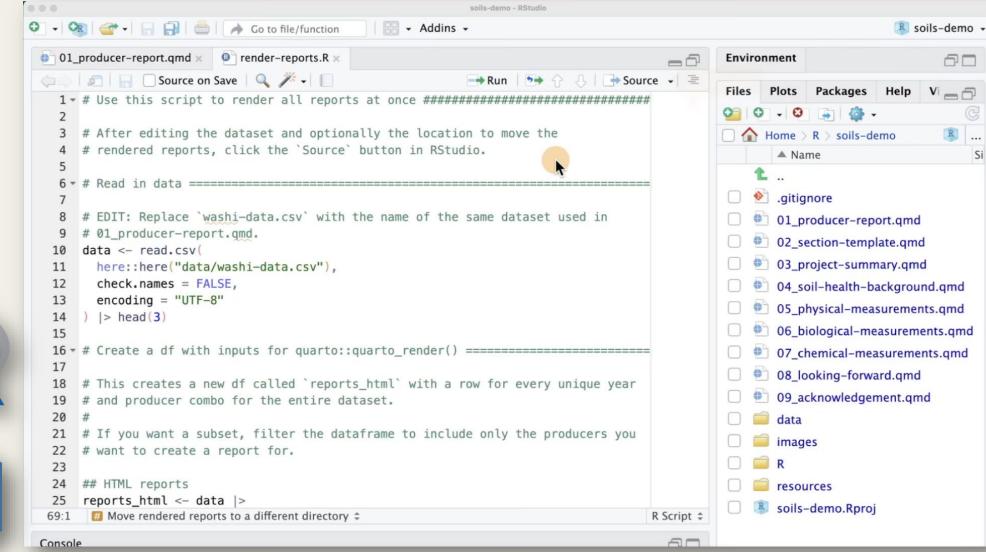

Project results

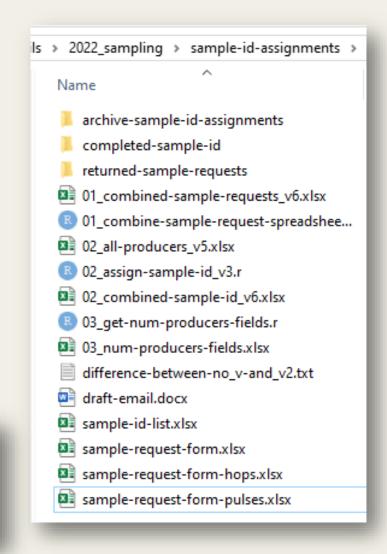
Texture from 0-12 inches

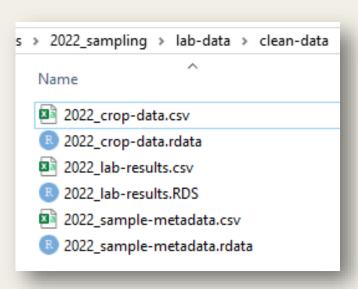
Field	Texture	% Sand	% Silt	% Clay
ASO001NT01	Silt Loam	18	58	24
ASO001NT02	Silt Loam	20	58	22

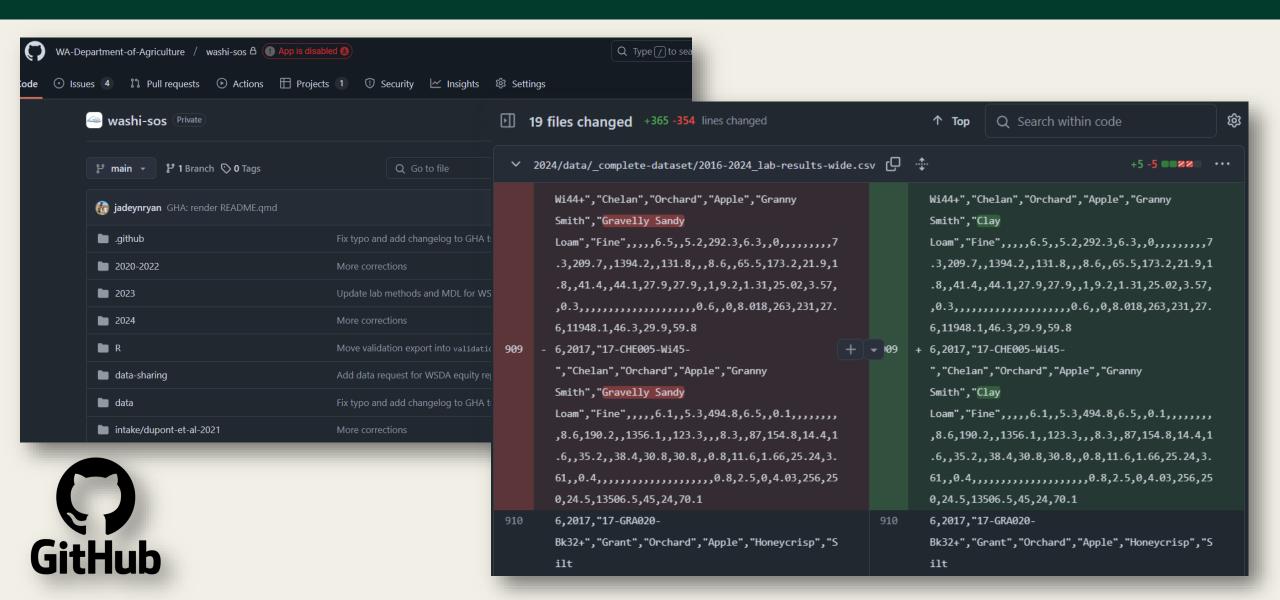

Texture of all fields in our study

The texture of your fields




After: create reports




quarto

Before: store scripts/data

After: store scripts/data

HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE EFFICIENT BEFORE YOU'RE SPENDING MORE TIME THAN YOU SAVE? (ACROSS FIVE YEARS)

			——How	OFTEN YO	U DO THE	TA5K ——	
		50/ _{DAY}	5/DAY	DAILY	WEEKLY	MONTHLY	YEARLY
	1 SECOND	1 DAY	2 HOURS	30 MINUTES	4 MINUTES	1 MINUTE	5 SECONDS
	5 SECONDS	5 DAYS	12 HOURS	2 HOURS	21 MINUTES	5 MINUTES	25 SECONDS
	30 SECONDS	4 WEEKS	3 DAYS	12 HOURS	2 HOURS	30 MINUTES	2 MINUTES
HOW MUCH	. 1 ("UNG/16"	8 WEEKS	6 DAYS	1 DAY	4 HOURS	1 HOUR	5 MINUTES
TIME YOU) 3 MINUTES	9 MONTHS	4 WEEKS	6 DAYS	21 HOURS	5 HOURS	25 MINUTES
SHAVE OFF	. TO 1 1 HINNEY IT 1		6 MONTHS	5 WEEKS	5 DAYS	1 DAY	2 HOURS
	1 HOUR		IO MONTHS	2 MONTHS	IO DAYS	2 DAYS	5 HOURS
	6 HOURS				2 MONTHS	2 WEEKS	1 DAY
	1 DAY					8 WEEKS	5 DAYS

Randall Munroe's xkcd

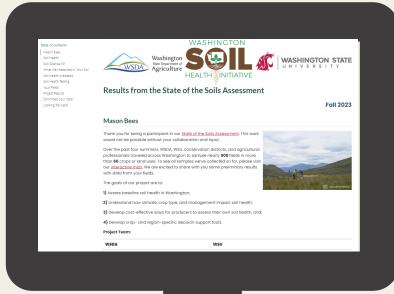
How do we use reports to make soils data actionable?

Help participants:

Access their soil health data

Interpret within their crop & region context

Translate into informed management decisions



Access soil health data

Provide the report in multiple formats

Interactive HTML

Printable PDF

Results from the State of the Soils Assessment

Fall 2023

Mason Bees

Thank you for being a participant in our <u>State</u> of the <u>Soils Assessment</u>. This work would not be possible without your collaboration and input.

Over the past four summers, WSDA, WSU, conservation districts, and agricultural professionals traveled across Washington to sample nearly 900 fields in more than 60 crops or land uses. To see all samples we've collected so far, please visit our interactive map. We are excited to share with you some preliminary results with data from your fields.

The goals of our project are to:

- 1) Assess baseline soil health in Washington;
- 2) Understand how climate, crop type, and management impact soil health,
- 3) Develop cost-effective ways for producers to assess their own soil health, and;
- 4) Develop crop- and region-specific decision support tools.

Project Team:

WSDA	WSU
Perry Beale, NRAS Manager	Deirdre Griffin LaHue, Asst. Prof, Soil Health
Dani Gelardi, Senior Soil Scientist	Teal Potter, Postdoctoral Scholar
Leslie Michel, Soil Scientist	Molly McIlquham, Extension Coordinator
Jadey Ryan, Data Scientist	Kwabena Sarpong, Graduate Student

State of the Soils Assessment

- 1

Make reports self-contained

- Don't make recipient hunt down other info
- Use plain language

Soil Health

Soil health is a term that describes how well a soil ecosystem supports plar living nature of soils and the importance of soil microorganisms. Healthy so reduce the effects of climate change, filter air and water, increase crop pro rural economies.

Qualities of a Healthy Agricultural Soil

- · Good soil tilth allows roots to penetrate
- Near neutral pH (6-8) maximizes nutrient availability for most crops, and min
- Sufficient—but not excessive—nutrient supply for crop growth
- Small population of plant pathogens and pests
- · Adequate soil drainage and infiltration
- Diverse and active microbial population
- Low weed seed bank
- No residual chemicals or toxins that may harm the crop, including salts
- Resistance to degradation such as from erosion or surface runoff

Soil Science 101

A crucial part of the soil health journey is measuring changes in your measurements. We can measure soil health with a range of indice properties, which can relate to important soil functions. Each indice affected differently by management.

To learn more about management practices that support healthy Conservation Service (NRCS) principles of building soil health.

Create accessible data visualizations

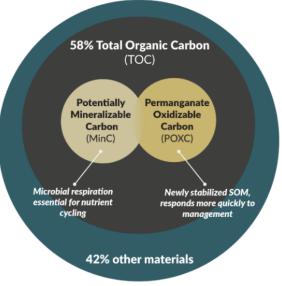
- Color contrast
- Convey info with labels, symbols, annotations, etc.
- Text size
- Alternative text

Interpret within crop & region context

Synthesize the latest research

What We Measured in Your Soil

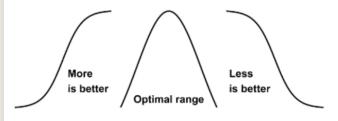
Biological <u>______</u>


hemical

Soil Organic Matter (SOM) is the portion of soils not made up of minerals, air, and water, but is instead composed of animal, plant, and microbial matter in various stages of decomposition. SOM is comprised of approximately 58% organic carbon (to convert total organic carbon (TOC) to SOM, an easy rule of thumb is to simply multiply by 2). The remaining portion of SOM includes other essential plant nutrients such as nitrogen, phosphorous, and sulfur. SOM varies by inherent soil and landscape properties such as texture, mineralogy, precipitation, and temperature. It is also greatly impacted by management. To learn more about how to increase SOM, read about the NRCS principles of building soil health. SOM underlies many of the benefits and ecosystem services that soils provide. It has a large impact on almost all other soil properties and is often used as a primary indicator of soil health. However, SOM can be slow to change as the result of management. Because of this, many other indicators have been developed to detect more sensitive components in SOM. Keep reading to learn more.

Potentially Mineralizable Carbon (MinC, frequently referred to as "Soil Respiration") measures the release of carbon dioxide (CO₂) from soil. This measurement is done in a laboratory incubation under controlled conditions "ideal" for microbes. The term mineralization refers to the

Soil Organic Matter (SOM)


Supports most ecosystems services and soil benefits, but slow to change

Offer context for interpretation

Soil Health Indicators &

The below table describes: 1. What each indicator helps measure in your soil; 2. Whether you want the measured value to be higher (more is better), lower (less is better), or in the middle (optimal range); and 3. How often to measure each indicator. Our understanding of these indicators is rapidly evolving as researchers measure them in diverse soils, cropping systems, and climates.

Soil Health Indicator	Soil Health Indicator Soil Function				
Measure every: 1-3 years					
ACE Soil Protein	Nutrient cycling, biodiversity & habitat, filtering & resilience	More is better			
Aggregate Stability	Physical support, water relations, biodiversity & habitat, filtering & resilience	More is better			
Electrical Conductivity (EC)	Physical support, nutrient cycling, filtering & resilience	Less is better			
Mineralizable Carbon	Nutrient cycling, biodiversity & habitat, filtering & resilience	More is better			

more is better, less is better, optimal range

Provide additional resources

Understanding Soil Health Results

Learn more about interpreting your soil health resul

Soil Health Testing

BE CONSISTENT

Sample at the same time each year.

Send samples to the same lab.

Keep samples cool, and get them to the lab quickly.

Keep good records of lab results.

HOW TO GET QUALITY RESULTS

CONTEXT MATTERS

Not all soils are created equal!

Indicators are impacted by inherent properties like climate and soil texture, as well as by management.

Don't be alarmed if your soil is below the optimal range for some indicators. See how far you can take your soil with management, but know there may be inherent limitations.

2

BE PATIENT

Some measurements may not change as quickly as you'd like. Sampling across time is very important.

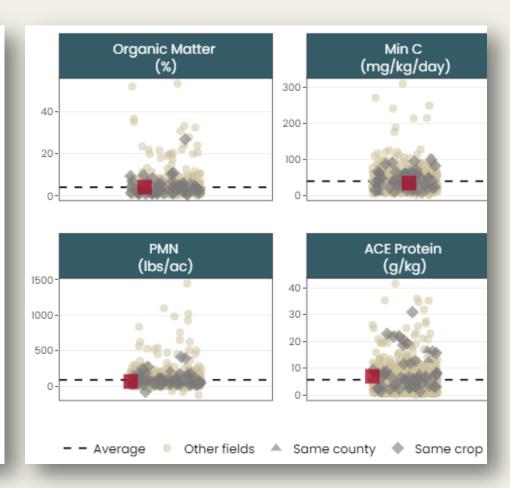
Our scientific understanding of these measurements is evolving! We are all on this journey together.

BACK TO THE BASICS

Old school measurements like pH, texture, and SOM are still incredibly important.

New indicators are constantly being developed. Don't feel you have to measure all of them, or let the process overwhelm you.

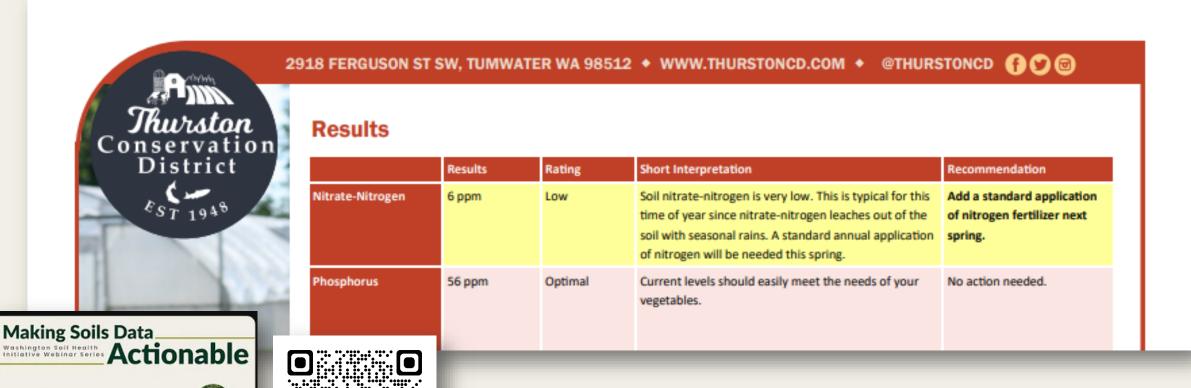
Have fun exploring through a soil health lens, but remember that you know your soil better than anyone!


Compare with samples from same crop, region, & project in table & plot representations

Biological Measurements

Field or Average	Organic Matter	Min C	POXC	PMN	ACE Protein
	%	mg/kg/day	ppm	lbs/ac	g/kg
01	4.2	33.5	462	66.62	6.99
Cowlitz Average (11 Fields)	5.0	40.0	630	120.00	9.00
Native Land Average (54 Fields)	4.2	42.0	520	91.00	8.00
Project Average (877 Fields)	4.2	39.0	450	89.00	5.70

Values 2 project average have darker backgrounds.


Values 4 project average have lighter backgrounds.

Translate into informed management decisions

Provide amendment recommendations for fertility*

Adam Peterson, Thurston Conservation District

with Adam Peterson

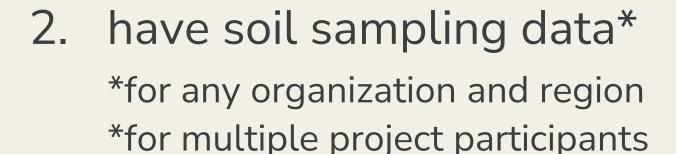
Making Soils Data Actionable: Chemical Indicators

49:15

*if qualified and you have enough information

Science still developing for management recommendations based on soil health

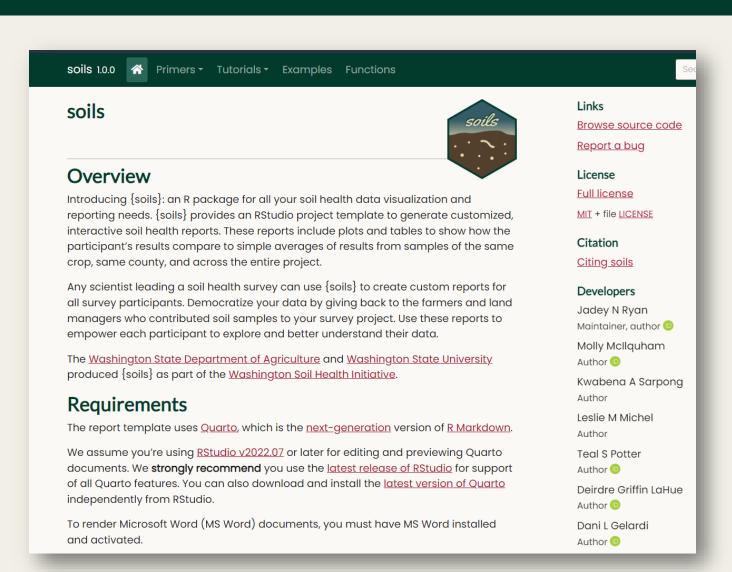
The State of the 'State of the Soils'


Author: Dani Gelardi, Senior Soil Scientist, Washington State Department of Agriculture

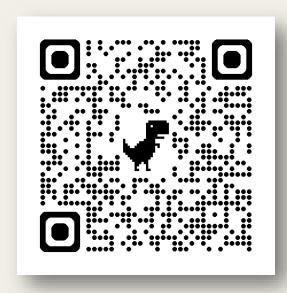
How can you make custom reports?

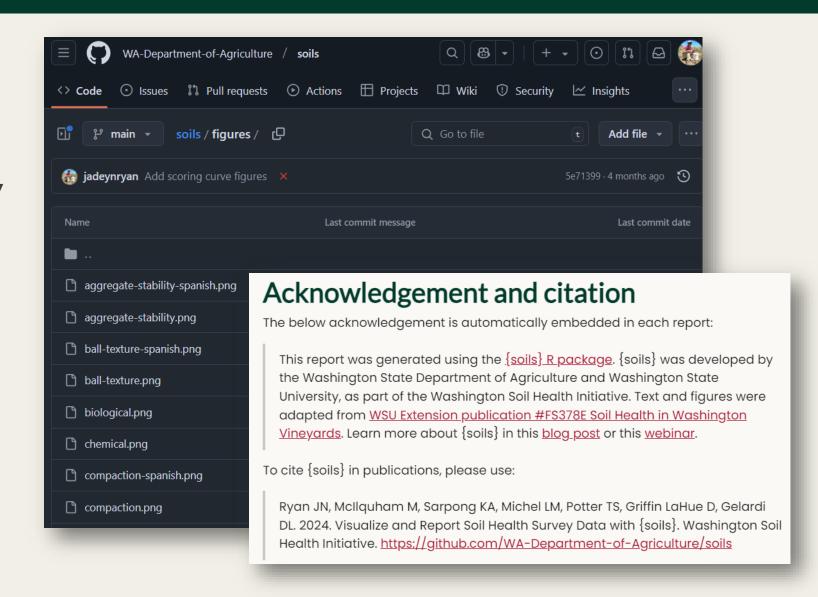
{soils} R package

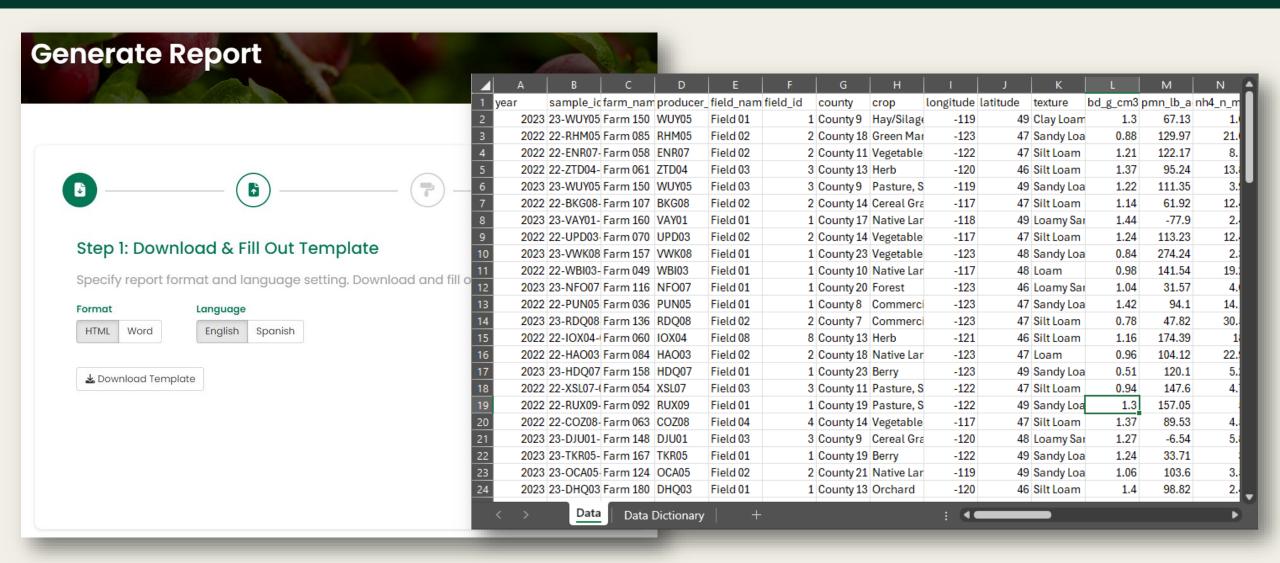
comfortable with or willing to learn



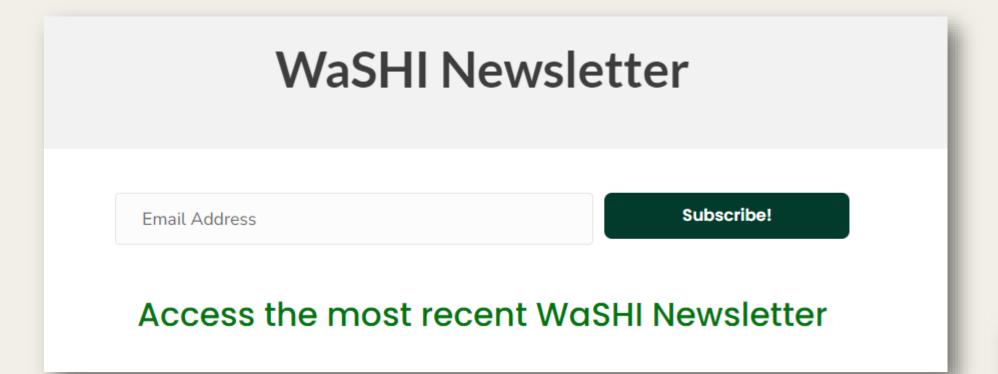
How do you get started?

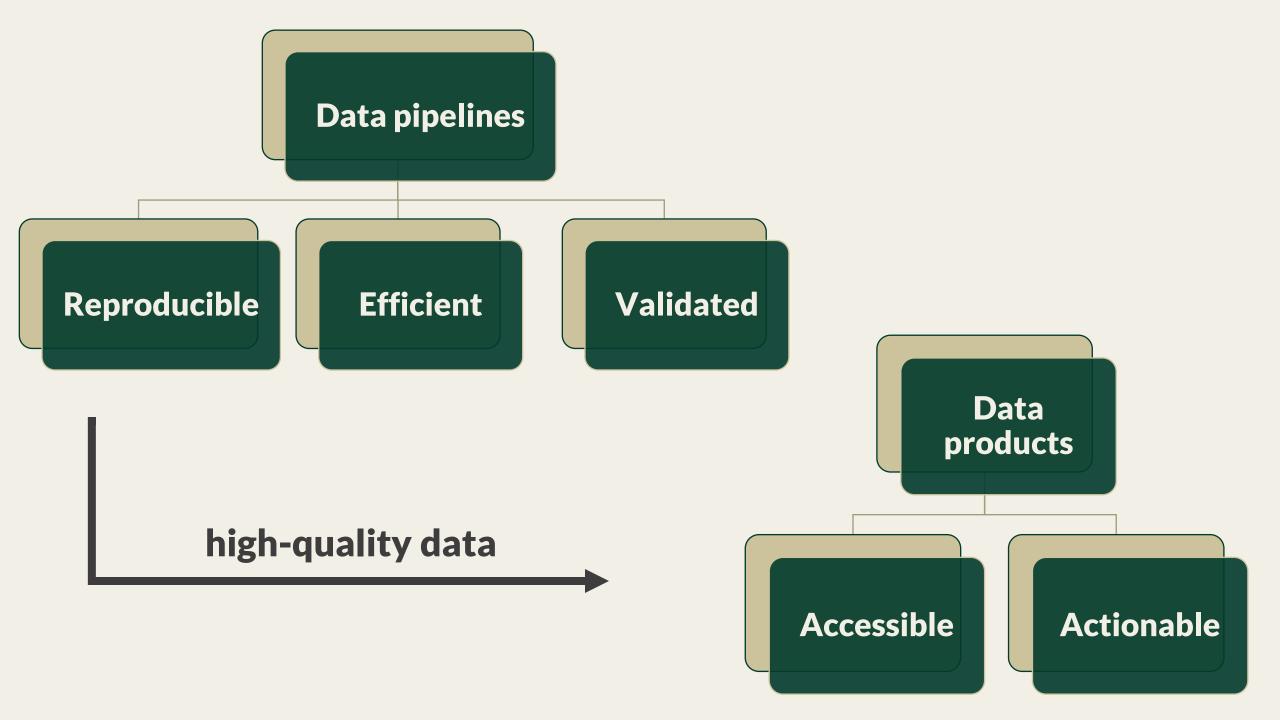

{soils} package website




Use or adapt {soils} text & figures

open-source GitHub repository




Coming Spring – Summer 2025: no-code webapp to generate reports

Get notified when it launches!

Resources to learn R, Quarto, and {soils}

- RStudio Education: different starting points to begin learning R
- R for Data Science (2ed): book by Wickham et al. (2023)

- Get Started with Quarto: intro and tutorial
- 20-min technical talk: Parameterized soil health reports with Quarto
- Intermediate Quarto Workshop: Parameterized reports with Quarto

- {soils} package website: package documentation & tutorials
- GitHub repository: source code and files
- WaSHI blog post about {soils}
- WaSHI Masking Soils Data Actionable webinar

Questions? Comments? Ideas? Jadey Ryan WASHINGTON jryan@agr.wa.gov Washington State Department of Agriculture WASHINGTON STATE UNIVERSITY Leslie Michel